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COMMENT 

Bond percolation critical probability bounds derived 
by edge contraction 
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Institute for Mathematics and Its Applications$, University of Minnesota, 514 Vincent 
Hall, 206 Church Street SE, Minneapolis, MN 55455, USA and Mathematical Sciences 
Department, 220 Maryland Hall, Johns Hopkins University, 34th and Charles Streets, 
Baltimore, MD 21218, USA 

Received 10 November 1987 

Abstract. A contraction principle is valid for bond percolation models. If G' is obtained 
from G by contraction of a set of edges, then the bond percolation critical probabilities 
satisfy p,( G') 6 p,(  G). The contraction principle provides relationships between graphs 
which do not follow from the inclusion principle. Application of the principle provides 
the following bounds: 

0.5000 S p,(pentagon lattice) S 0.6527 

p,(  Kagome lattice) 6 0.6180 

0.3820s p,(dice lattice). 

For many years following the introduction of percolation models by Broadbent (1954) 
and Broadbent and Hammersley (1957), the major focus of mathematical percolation 
theory was the exact determination of critical probabilities (also called percolation 
thresholds). A heuristic method of Sykes and Essam (1964) conjectured the value of 
f for the square lattice bond model and the triangular lattice site model, 2 sin(n/ l8)  
for the triangular lattice bond model, and 1 - 2 s in(n/  18) for the hexagonal lattice 
bond model. Rigorous proofs for these values were obtained much later by Kesten 
(1980, 1982) and Wierman (1981). Kesten's (1982) principal theorem verified that the 
bond percolation critical probabilities of dual lattices sum to one (for periodic lattices 
with at least one axis of symmetry). Wierman (1984) derived exact bond percolation 
critical probabilities for an additional pair of dual lattices, using the star-triangle 
transformation. However, exact critical probabilities are known for only a small set 
of two-dimensional periodic graphs. 

There are also few techniques for deriving rigorous bounds for the critical probability 
in percolation models. The reciprocal of the connectivity constant (determined from 
the numbers of self-avoiding paths in the lattice) is a lower bound for the critical 
probability of both the bond and site models (see Hammersley 1957). The inclusion 
principle (see Fisher 1961) can be used to find upper and lower bounds by comparison 
with lattices for which the critical probabilities are known. 
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1488 J C Wierman 

In this comment, we introduce a technique for determining bounds for bond 
percolation models, based on contraction of edges. The operation of contraction of 
an edge involves removing it from the graph and replacing the endpoints by a single 
vertex, with all the other edges incident on the two endpoints being retained. In the 
bond percolation model, this is equivalent to raising the probability that each contracted 
edge is open from p to 1. From this fact, it is clear that, if G' is obtained by contraction 
of edges in G, then p,( G') s p,( G). The fact also shows that the contraction principle 
is analogous to the inclusion principle. Obtaining Gd from G by deletion of edges 
(so G d c  G)  is equivalent to lowering the edge probabilities from p to 0 on the deleted 
edges. 

Contraction of edges is a common tool in graph theory, which has been applied 
in percolation theory before. The fact that the bond percolation critical probability 
of a lattice is no greater than the site percolation critical probability of the lattice may 
be proved using the contraction-deletion method (see Kesten 1982, 910.1). In network 
reliability theory, contraction is used to find upper bounds on the reliability function 
(which would correspond to upper bounds on the percolation probability function). 

We begin with a few previously known relationships to illustrate the technique, 
then follow with derivations of new critical probability bounds for the pentagon, 
KagomC and dice lattices in the following examples. 

( a )  Represent the square lattice S in the plane with vertex set 2' and edges between 
vertices that are a distance one apart. Contract all vertical edges with lower endpoints 
in the set {(x, y ) :  y = x + 3k, k E Z } .  This produces the bowtie lattice B, for which the 
critical probability has been determined by Wierman (1984), so we have (see figure 1) 

P c ( B )  S P ' ( S ) .  

( b )  Represent the hexagonal lattice H in the plane with regular hexagonal faces 
with one set of edges parallel to the x axis (called horizontal edges). The set of 
horizontal edges is partitioned into vertical columns of horizontal edges. By contracting 
the horizontal edges in every second column, we obtain a planar lattice which has 

( a )  ( b )  

Figure 1. (uj The square lattice. Edges marked with full  circles are to be contracted. ( b j  
A graph isomorphic to the bowtie lattice, obtained by contracting the edges marked in ( U ) .  
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square and hexagonal faces, which is the dual of the ‘bowtie lattice’, denoted B O ,  

Therefore 

P c ( B D ) q m - u .  
Contracting each horizontal edge in B” produces the square lattice S, so (see figure 2) 

PAS) SPc(BD).  
Let the square lattice S be represented in the plane as in example ( a ) .  Contract all 
vertical edges for which the lower endpoint has an even sum of coordinates. The 
resulting lattice is the triangular lattice T. Therefore 

P C ( V  “ - P C ( S ) .  

From examples ( a )  and ( b ) ,  the contraction principle alone establishes the relation- 
ships 

PAT) s P J S )  =s Pc(BD) pc(W 

Pc(B) P C ( S ) .  
The inclusion principle alone establishes 

Figure 2. ( a )  The hexagonal lattice. Edges marked with full  circles are to be contracted. 
i b )  The dual graph of the bowtie lattice, obtained by contracting the edges marked in ( a ) .  
i c )  The dual of the bowtie lattice. Edges marked with full  squares are to be contracted. 
( d )  The square lattice, obtained by contracting the edges marked in (c ) .  
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However, B cannot be contracted to obtain T (since contracting an edge produces a 
vertex of degree 8 or 10) and H is not included in BD (since deletion of any edge of 
BD creates a face with more than six edges). 

( c )  Consider the representation of the hexagonal lattice in example ( a ) .  Contract 
all the edges with positive slope in every second column of such edges. Since we 
obtain the pentagon lattice P (see figure 3) 

p,( P) 5 p,( H) = 0.6527. 

( d )  Represent the pentagon lattice as in figure 4. Contracting all edges with negative 
slope produces the square lattice, establishing 

0.5000 = p , ( S )  G p,(P). 

Waldor et a1 (1984) obtained the estimate p,( P) = 0.574 using the annealed model 
solution for the zero-temperature bond-diluted Ising ferromagnet. Schulte and 
Sprenger (1985) obtained the estimate 0.579 *0.001 by computer simulation using the 
Hoshen-Kopelman algorithm. Note that both estimates are consistent with our bounds. 

The results in examples (c )  and ( d )  cannot be obtained by the inclusion principle. 
Removing an edge from S creates a face with six edges, so S does not contain P. 
Removing any edge from P creates a face with eight edges, so P does not contain H. 

( a )  ( b )  

Figure 3. ( a )  The hexagonal lattice. Edges marked with full circles are to be contracted. 
( b )  The pentagon lattice, obtained by contracting the edges marked in ( a ) .  

( a )  ( b )  

Figure 4. ( a )  The pentagon lattice. Edges marked with full circles are to be contracted. 
( b )  The square lattice. obtained by contracting the edges marked in ( a ) .  
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( e )  Represent a lattice L in the plane with vertex set Z 2 ,  with an edge between 
( i , j )  and ( i , j + l )  for all i and j ,  and an edge between ( i , j )  and ( i + l , j )  for all i and 
all even j. This lattice may be viewed as a square lattice with a vertex inserted on each 
vertical edge. Thus, using the critical surface determined by Kesten (1982, $3.4, example 
(ii)), the bond percolation critical probability of L is the root of p + p 2  = 1, which is 

Construct a lattice L’ from L by inserting an edge from (i, 2 j+  1) to ( i +  1 , 2 j +  1) 
(6- 1)/2 0.6180. 

if i + j is even. By the inclusion principle, we have that 

Contracting the edges just inserted produces the KagomC lattice K (see figure 5 ) ,  so 
we obtain 

PJL’) SP,(L).  

pc( K) s pc( L’) S 0.6180. 
Since the dice and KagomC lattices are dual graphs, the upper bound in example 

( e )  provides the lower bound 
0.3820 S pc( D). 

There is disagreement in the literature concerning the value of the KagomC lattice 
bond percolation critical probability. Early estimates of 0.449 * 0.032 (Dean 1963) and 
0.526 (Neal 1972) were obtained by Monte Carlo methods. A renormalisation group 
approach by Murase and Yuge (1979) yielded the estimate 0.4697. Ottavi (1979) used 
the star-triangle transformation to derive the bounds 0.522 372 s pc(  K) s 0.528 924. 
The argument has intuitive appeal but is not mathematically rigorous. 

( c l  

Figure 5. ( a )  The lattice L. ( b )  The lattice L‘. Edges marked with full circles are to be 
contracted. ( c )  The Kagome lattice, obtained by contracting the edges marked in ( b ) .  
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Note that the upper bound given by the contraction principle is lower than the site 
percolation critical probability of the Kagome lattice (= 0.6527, which is equal to the 
bond percolation critical probability of the hexagonal lattice), the best previous upper 
bound. It is unusual to find a rigorous bound between the site and bond model values. 

If G' is obtained from a planar graph G by contracting a set E of edges, then the 
dual graph (G')D is obtained from GD by deleting the edges of G which cross edges 
in E. Thus, while several relationships shown above cannot be obtained from the 
inclusion principle alone, they may be obtained from the inclusion principle and 
Kesten's ( 1982) principal theorem for dual percolation models. However, the contrac- 
tion principle provides a much more elementary proof and relationships may be 
recognised more easily for some graphs without working with the dual graphs. 

We may consider a similar technique for site percolation models. Increasing the 
probability that a vertex U is open from p to 1 is equivalent to inserting edges between 
every pair of sites that are adjacent to U, i.e. to close packing a face which has its 
vertices at the sites that are adjacent to U. Examples of relationships between site 
percolation critical probabilities that can be obtained are: p,(T) s p c ( H ) ,  pc(SM) s 
pc( B) s p,( BD) and pc(SM) s p c ( S ) ,  where SM denotes the matching graph of the square 
lattice. However, as yet, no improved numerical bounds have been obtained using the 
technique. 

As in the case of the pentagon lattice, critical probability bounds rarely determine 
the leading digit of the critical probability. Although there have been many advances 
in percolation theory since its origins, determination of accurate bounds for critical 
probabilities for a variety of graphs remains an interesting and challenging open 
problem. 
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